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for small nutation angles. Results obtained using the approximate
analytical expression for the nutation angle are compared to
corresponding numerical solution to the full set of nonlinear equations

for several choices of system parameters and very good agreement is

found, even for large nutation angles.
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o I. INTRODUCTION

- Spacecraft which contain spinning rotors and nominally despun
ﬂ;?t platforms are called "dual-spin" spacecraft. 1In such a dual-spin

E?E configuration, the rotor provides gyroscopic stiffness for stability
1,“ while the despun platform provides an oriented platform which usually
\::\'.:

-3 contains scientific instruments, antennas, solar panels, and other
h.\' components which must be oriented in a "fixed" direction.
;*i' A classical rigid-body analysis of the attitude stability of a

SE; spinning single body spacecraft indicates that a state of steady spin of
2£: the spacecraft is stable if rotation is about its principal axis of
‘,ﬂ; either minor or major moment of inertia. This classic stability

ii? criterion has been known to be inadequate since 1958 when the

&:; unanticipated instability of motion about the minor spin axis of the

‘i; first U.S. satellite, Explorer I, was observed. The explanation of this
?:E instability is credited to R. N. Bracewell and 0. K. Garriott, who
:Sg modeled that spacecraft as a semirigid body which dissipated energy, and
\:i which therefore would approach the state of minimum energy which
Y

:;} corresponded to rotation about its axis of maximum moment of inertia.l
ftj In 1964, Landon and Stewart demonstrated that the motion of the
spin axis of a symmetric dual-spin spacecraft with a despun platform may
_;i be stable if the spin axis is the axis of either maximum or minimum
. moments of inertia provided an energy dissipation device (or damper) is
placed on the despun platform.? Independent development of the
s':,z 1
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e
[ dual-spin stabilization concept by A, J. Iorillo of Hughes Aircraft
iﬁj Company extended the scope of analysis to axisymmetric dual-spin
Si; vehicles with energy dissipating dampers on both the rotor and
{; platform.3 This extension allowed for the analysis of spacecraft of
S;E realistic complexity, since, in reality, internal motion on both the
RN
‘I;; rotor and platform cause energy dissipation.
A
Y ) Although the problem of attitude stability of dual-spin spacecraft
‘i£: A has been studied for more than two decades, it continues to be an area
‘;Ei in which more can be learned. Several different methods can be used to
S
;J; study the attitude motion of a specific spacecraft, but if the type of
:gi configuration permits, a conventional linear stability analysis is a
[~
,;%? convenient first step. A linear stability analysis of a specific dual-
{“.n spin spacecraft which contains arbitrarily located spherical dampers has
;;; been presented by Laskin, Sirlin, and Likins.* They also obtained cor-
_E%S roborative results using an energy-sink method. 1In applying both
_-: .methods, small nutation angles were assumed. An alternative approach to
;Eﬁ the energy-sink method is available, since when the energy dissipation
gsé is slow enough to justify the use of the energy-sink method, a pertur-
l; bation method may be often used effectively. An analysis of this type
:Eﬁ was used by Cochran and Shu to analyze the nutational motion of a dif-
i§§ ferent spacecraft configuration and they obtained very good results.®
‘r? The model considered in Reference 4 is of the "ideal" type for
52;5 analysis because it is axisymmetric and the energy dissipating devices
TE;E on the rotor and platform are such that energy can be dissipated
."F without changes in the inertia properties of the spacecraft. However,

~§s because the spacecraft attitude motion is nonlinear, the linear analysis
[ )
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PP

; does not, and cannot be expected to, predict correctly the attitude

\

(i-_ . stability of the spacecraft with respect to substantial perturbations in
‘E;i: initial conditions. Laskin, et al., also found, via simulation on a
A

;:iz digital computer, that in some cases, stability is dependent upon the

ratio of the spacecraft's axial and transverse moments of inertia, a
parameter which does not appear in the linear analysis equations.“

This thesis presents a "perturbation analysis" of the attitude
motion of the type of spacecraft investigated in Reference 4. Following
to some extent Cochran and Shu,> the motions of the spherical bodies are
treated as perturbations of the attitude motion and the generalized
method of averaging is used to find an approximate analytical expression
for the nutation angle for the case of a constant-speed rotor. This

expression approximates the nonlinear characteristics of the spacecraft

o~

o motion and also contains the inertia ratio that is missing from the

A

;}}: linear stability analysis. The expression obtained for the nutation
o angle is used to analyze the stability of the space:raft's attitude

»

motion.

PPy -

a4 4 N
k)

The full nonlinear equations of motion are developed in Appendix A

P4
)

LY
L
. Yy

and numerical solutions of these equations and are used to verify the
results obtained using the approximate solution.

The equations used in the generalized method of averaging are
developed by treating the changes in the angular moment of the
spherical dampers as perturbing torques. The platform—fixed components
of the total angular momentum of the spacecraft are used as dependent

variables along with the components of angular momenta of the

P

dampers and the rotor's spin axis angular momentum. Euler angles which
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define the attitude of the platform are then used to make a change of
variables which transforms the angular momentum into equations of the

"normal form" required to use the generalized method of averaging.®.’ i
A brief description of the generalized method of averaging is given in

Appendix B.

The generalized method of averaging is used to produce an
expression that approximates the nutation angle of the spacecraft's
attitude motion when the rotor is spinning at a constant speed with
respect to the platform. This expression, which contains all the
spacecraft's inertia and damping parameters, is qsed to determine
regions of stable and ;nstable spacecraft attitude motion in the damping
parameter plane for several spacecraft inertia parameters. Results
obtained using the solution for the "“averaged" nutation angle are also
compared to those found by numerically integrating the full set of

nonlinear equations for several "constant-speed" rotor cases.




II. SPACECRAFT MODEL

The type of spacecraft considered in this iavestigation is a highly
symmetric dual-spin configuration such as that depicted in Fig. 2. The
physical model of this type spacecraft consists of two axisymmetric
rigid bodies, a nominally despun platform and a rapidly spinning rotor,
connected by a shaft running along their collinear axes of symmetry.
Both the platform and rotor contain arbitrarily located spherical
dampers. These dampers may be thought of as fully loaded fuel tanks
which are modeled as rigid spheres with coﬁstant surface damping
coefficients.* Energy dissipation occurs when the spherical dampers
rotate with respect to their respective containers and is due to the
torques which oppose such motion of the dampers. The spherical nature
of the dampers allows for energy dissipation with no change in the
inertia properties of the spacecraft,

In Fig. 1, the Cxlxzx3

center of mass of the spacecraft and rotates with the platform. The

coordinate system has its origin at the

unit vector triad (§1,§2,§3) is attached to Cx,x,x,. The angular
velocity of the rotor with respect to the platform is Q = n§3.
In this analysis, the translational motion of the spacecraft is not

considered and its attitude motion is assumed torque free.
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III. EQUATIONS FOR USE IN THE GENERALIZED METHOD OF AVERAGING

Attitude Motion of the Spacecraft

The equations for the attitude motion of the spacecraft may be
developed in terms of H, the angular momentum of the system., The

platform-fixed components of H are

H = Lu + Ip(wmﬂnl) + IR(leﬂnl) , (1a)

H, = Lo, .+ IP(“:PZWZ) + IR(szﬁnz) (1b)
and

Hy = Jpug + JR(w3+¢) + IP(mP3ﬂ93) + IR(wR3+w3+¢) . (1¢)
The angular momentum of the dampers has platform-fixed components

hy; = Ip(wpi*wi) , for i = 1,2,3 , (2a)

ho, = IR(mRiﬂni) , for i = 1,2 , (2b)
and

hpy = IR(wR3+m3+¢). (2¢)
Hence, Eqs. (1) may be rewritten as

B = Lw, + by + hp, (3a)

Hy = Tw, + hp, + ho, (3b)
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< where h = JR(w3+¢), is the symmetry axis component of the rotor's

{ . angular momentum. .
2 If the no angular momentum compor 'nts of the platform and rotor X
o . : : .

}: dampers are combined into single terms, i.e.,

{; {0} = {0y} +{ng,} , fori=1,2,3, (4)

A K
]

k3
4
«®ata

then the following expressions for Wy, Wy, and wq result from Eq. (3).

-

w, = (Hl-hl)/It s (5a)

ARARNAFE . PRIV

w, = (Hz-hz)It (5b)
and

wy = (H3-h-h3)/JP (5¢)

When Euler's moment equation is applied to H, the following

oy

equation is obtained:

b2 . ;

% M=H+wxi (6)

o . ;
Here, H is the time rate of change of {H} as seen in the Cxlxzx3 .

b3 .

'\" system and M is the external torque about the spacecraft's center of

b

'f.;f mass. Since the motion of the spacecraft is considered torque free, the

“»

_ following matrix equation may be obtained from Eq. (6).

% (4} = -[3] {1} . %

3

= where {fi} = (&, &, f,]17 and

o 1 7273 .

- :

5 0 “wq Wy K

b 9! ~ R

A, (w] = w, 0 w, . (8)

—w, Wy 0

B A S A R R RS S A AT UM SRS
d d 4 4
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Equation (7) may be expanded after the approximations for wy, w2,

and w3 are substituted to obtain

o= L _1,. -

i, HZ[H3Q3; It) h/Jp] - Byha /3, + Hih, /T, (9a)

f, = -8 [H (-1 - wa ] + 8 /0, - Hoh /T

2 1134, T P 1°37p ~ 371 e
and

Hy = Hyh /T - Hh/T . (9¢)
Letting

1 1 1
A= Hfe= ) -~ , (10)
3\, I T

Eqs. (7) may be rewritten as

H = HyA - H2h3/JP + H3h2/It, (11a)

Hy = -H,A + th3/JP - t13hl/1t (11b)
and

Hy = nzhl/rt - thz/It. (11¢)-

Now, refer to Fig. 2 which shows the fixed reference frame CXYZ
with the constant angular momentum vector, H, aligned with the Z axis.
The spacecraft axis system Cx1x2x3 is obtained from the CXYZ system by
a sequence of rotations through the Euler angles ¥, ©, and $. It can be
seen from Fig. 2 that the Euler angles can be used to write the

components of H in the form

H, = H sind sind, (12a)

H, = H sind® cosd (12b)
and

Hy = H cosO. . (12¢)
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(:': By differentiating the above equations with respect to time, one finds
that
ﬁl = HO cosO sind + Hb simd cosd , (13a)
N
ﬁz = H) cosO cosd - Wb sind sind (13b)
Y and
ﬁ3 = -HO sino. (13¢)
TS
G
- Equations (11), (12) and (13) may be used to obtain the following
;: equations:
O cos® sind + & sind cost =
xRy h,y h,
. A sin® cosd - ——sind cosd+ —= cosO , (14a)
J I
4 t
o d cosd cost - & siod sinp =
“'l’_.t
o hy hy
-A sin® sind + — cosO sind~ = cosO (14b)
. h 1
e t t
a*:-: and
"l .'|
oils
" L T R
al © 8in® = 7= sind sind ~ 5 sind cosé. (14¢)
" t t

Equations (14b) and (l4c) may then be solved for & and &, respectively.

Hence,

h h
o .
o 0= Tz sind -'Tl cosd (15a)
o t t
v and
>,
’.‘:,': [ h3
o ¢ = A - ?; *+ (h sind+h,cose)/(1, tand). (15b)
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" These are two attitude equations that will be used later in applying the
&
generalized method of averaging.

From Fig. 2, it can be shown that the kinematic equations for the
'\" Euler angles are:

. 0 = w, cosd - w, sind, (16a)
’ \4 [ 3 °

? = wy - ¥ cos® (16b)

A and

~‘$~‘ ) R .

ot ¥ = (w, sind+w,cosd)/sind. (16c)
o 1 2
g
'.::: At this point it is convenient to find approximations for wi, wjp,
2 and w3. The approximations are found by assuming that each of the
.
AORS : .
‘\-:.;: damper inertias is much smaller than any of the spacecraft inertias. By
.

.}-‘: invoking this assumption, approximations for Wy, Wy and w, may be
obtained from Eqs. (5). These approximations are

AN H,
Sl 0, = - (17a)
iy 15T
o t

1]
v'\v‘,‘ Hz
o, " & —

e w, I (17b)

2, t
IS
o
.:_‘.:.. and .
‘i (D3 = (H3-h)/JP- (17C)
;:::;l: If the above approximations are used in Eqs (16), the following
::i:j equations for 9, 5, and ¥ may be found:
e . A H,
:;: 0= T cos® - 7= sind + @(a), (18a)
‘N t t

hAY

oh . .
NN § = (Hy-n)/3, - ¥ coso + Tla) (18b)
or
:.: and
o ot
3
':’.:.. _______ [N D T T T T P I Y. (L e e te ey Tt 'v*
\:._‘....-‘*'. _.'..-...:. --._:.. --_-:... et e e e SO -.N..‘.‘,-....)_\. , "~‘.."‘~~ w ‘ l“' e '- ~\q -‘ NN f< o e
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H H

( . Yy = (—1- sind + —Zcosé)/sine + g(a) (18¢c)
- 1 I
. t t
S
Y By substituting values for H;, Hp, and H3 from Eqs. (12), one gets the
1‘,:-'

' attitude equations
Y
e =0 + ), (192)
‘\::
! =1 + O (19b)
\
S and
22 =51+ Gl (19¢)
B I
\‘;; t

o

In the application of the generalized method of averaging the angles ¢

and ¥ are referred to as "fast'" variables because the zeroth-order

- approximations to their time rates of change are non-zero. The angle O
P

(-

( is called a "slow" variable, because to zeroth-order it is constant.’
s If the terms of (a) are disregarded and ) ='%— , then the zeroth-

S t

::{ order approximation for the Euler angles are

" 0=0_,, (20a)
~.}1 o

o, d = At + ¢ (20b)
o °

-3 and

;1: These approximations will be used later in the development of the

‘.r::.

:: zeroth-order approximations for the attitude motion of the dampers.

.

.j:

Attitude Motion of the Platform Damper

To develop the desired equations for the platform damper attitude

motion in the desired form, it is necessary to use the inertial

qrr{fffa-'
-'l'.l‘l'-‘ s

components of angular momentum. If {kp} is used to denote the

> matrix of inertial components of the angular momentum vector of the

s A" .t m e v tL e o m v S agtalt T P . P R S e
‘*"’7 “ N.“./ ..'..d’ .d' e .-' ‘1’ ‘.. "'-l' - Bl \J\H‘ \‘ .!' .'% " ‘Q. .* .-\.“ -~ "\.‘
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platform damper and a 3-1-3 rotation through the angles ¥, O, and ¢
., is used to transform from inertial components to platform-fixed
- components, then
h } =[A] {x (21)
) (n} = [a] ()}
l:,:
N where [A] is the transformation matrix,
A
i cosd sing O 1 0 0 cosY sin¥ O
\
- [A] = |~sin® cose¢ O 0 cosO sin® | |-sin¥ cosy O (22)
.
W, 0 0 1 0 -sin® cosO 0 0 1
P -
£
. In its expanded form the [A] matrix is
o
N [ cosd cosY cosbé siny . ]
-~ -sind cos@ sin¥ +3ind cosO cosY¥ sin® sind
a] = (23)
{ -sing cosYy -sind sin¥ .
-cosd cos® sin¥ +cosd cos@ cosY cosd simd
_‘_n Lsin@ siny -sind® cosY¥ cosO
’ Euler's moment equation may be applied using the angular momentum of the
>
o
-,-:'. platform damper to obtain the vector equation,
= :
I N h +9xh =T =-Cy . (24)
v “p - -p “p PP
:3‘ By writing Eq. (24) in matrix form and substituting {mp} = TP; {hP} -{w} ,
:: one may obtain the results, /
".
- . c, )
S {hp} == I—P {hp} *+ Cp{w} - [w] {hp}’ (25)
,- If Eq. (21) is now differentiated with respect to time, a second {
-, 'j
: equation for {ﬁp} is found to be .
N
= :
‘ %
5 .
R N
L OSSN SR f SO SR O (*.','-':'-"".';\:'\"'-:_\'".":\‘ SRR B W YL S e e
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(ol = [A] (g + (4] (R} 26)

However, it can be shown® that

[A] = ~ [w] [a]. (27)
Hence, Eq. (26) may be written in the form,

(Rp} = -[o] [Al{igh + (4] (T}, (28)
Now, by equating Eq. (28) and Eq. (25) and using Eq. (21) for

{hP}’ one may obtain an expression for {ip}; i.e.,
C

(k) = = 2 (i} + cp[al {u} . (29)

P

A solution to Eq. (29) may be assumed in the form,

-C t/I
{i} = {apb e © T (30
If Eq. (30) is differentiated with respect to time, a second form
for {iP}, viz.,
-C,t/1 c
° . P P P
[} = fiphe © F - 2 [, 6D
t
Now, by equating Eq. (29) and Eq. (31), one finds that
c,t/1
{a} = cpe T Tla]T(u} - (32)
Equation (32) may be expanded to obtain
. cpt:/IP
ap = CPe (auw1 *a,w, *oay, w3), (33a)
. Cpt/I,
ap, = Cpe (alzw1 +ayw, +oag, m3) (33b)

and

.....
. D R
------




o
‘ ::_ 16
J':
ey . CP t/ IP
{ apy = CPe (al3m1 *ayqw, * a5, m3) (33¢)

4 et

where a;j are the elements of the [A] matrix.

Pr)
O 4

If the approximations for ©, ¢, and ¥ given in Eqs. (20) and the

o
FId

approximations for w), wp, and w3 given by Eqs. (17) are used in Eqs.

(33), it can be shown, after some algebra, that

NG
"\‘ A

. c t/1
ap = CP Aze sin¥ , (34a)

.

“; .ﬂ * )

. c.t/1
ap, = -CP A ze cosy (34b)

H& s

and

c.t/1
&P3 = cl,lxz2 + x(H3-h)/JP]e P P, (34¢)

KA RARA

where z = sin® and x = cosO.

P

The solutions to the above equations, integrated from t, =0 to t)=t,

%}j‘.

are

.S

e 24
[¢]
=
N

P cPt/IP cP

. 4 * {e (i-s1nw -Acos¥) + A} o+ %p10° (35a)
= (£)2n2 F

WY 1 A

0 P

AN ‘
WY ~C, Az c,t/I, C C

L P P P, °P . P

@py = T {e (f_ cos¥ +Asiny) ‘f-} * apog (35b)

(£)2+2 P P
1

'h',
-~ and

2 ) Cpt/Tp

X apy = Ip{x22 + xH -h)/3 }(e 1) + apqq- (35¢)
,3: When used in Eq. (30), the above expressions give the inertial

%

N components of the platform angular momentum as functions of time and the
*Q

i fast variable ¥=At. These components are

<

~Q

‘c

N

»
-

J‘

4
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q.‘:

\1
= 17

it Cplz Cp -Cpt/I, -Cpt/1,

§ ko * % (T— sin¥ -AcosY +\e ) + %5108 R

:: P2 2 P (363)
X (+)7+

> P

7 / /

e ~CpoAz C c =-Cyt/I =C,t/I

kpo = G 4 (Yg cos¥ +\sin¥ - f-?- e T P) * ap,ge pUR

.;: (I_P;)Z.,.xZ P P (36b)
AN and P

o , ~Cpt/1 -C,t/1,

' kg = L[z . + x(H3-h)/JP][ l-e )+ ap30 . (36¢)
.:\.:

\h\i

b *“ Armed with an expression for the inertial components of angular

o

o momentum, one may find the relative components from Eq. (21), which in
A .

- component form are
o fp1 = ke * 212%p2 * 213kpse (378)
( Bpy = 31%p1 * 322%p2 * %p3%p3 (370)
2 and

o Bp3 = 831 kp) * dgpkpp * 233Kp; - (37¢)
:;::j If Eqs. (37) are expanded using the approximations for ©, ¥, and 3
i in the transformation matrix and the transient terms in {kp} are

<

:::: neglected, then it can be shown, again with some algebra, that:

%

..",-c chA CP

.\‘. hPl = -(c—-m [‘XCOS@ - 'f"‘ X s:.n‘b]

a0 PP P

.-?_J

o + I,z sind [A22+x(H3-h)/JP] , (38a)
-F.:-

s Cph Cp
i by * TETT22 [Asind - = x costd]

g P2 CP IP +\ IP

S

i + I, zcost 22 + x(Hy-h)/JT,] (38b)
4;"

27
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e 2220/1,
. . hpy = G + I, xx22 + x(Hy-h)/Jp ], (38¢)
=
::iﬂ The above expressions give the angular momentum components of the
o platform dampers as functions of the slow variable @ found in x and z
}
\ij and the fast variables ¢ and V.
6
‘iﬁ; Motion of the Rotor Dampers
ol s
" The equations for the rotor damper motion may be developed in the
L
:_: same manner as those for the platform, If {kR} denotes the inertial
O
-
fnj; angular momentum, then the same transformation exists for the rotor
\
o
_(; dampers, i.e.,
s (ng} = [4] [ig} - (39)
TR
s .
e If a vector {¢} is defined such that
L
.'-". . []
N (3} = 0, 0, T, (40)
zf’i
oo, then Eqs. (2b) and (2c) can be written in matrix form as
o {ng} = Tp{wpl + t{w} + 1p{e}. (41)
e
o Euler's moment equation applied to the angular momentum of the rotor
Y .
gives
D .
"L he + wxhy = T, . (42)
A
,ti: Switching to the matrix notation and substituting
1 (o .
o {wgl = 3= {ng} - {w} - {4}, into Eq. (42) yield
e R
9o . . -
L {het = ~ca/1q {bg} + cplu} + c{d} = [wl {np} . (43)
@7

s By differentiating Eq. (39) with respect to time,one obtains
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{hp} = (&) {1} + [A] {kg} = - (0] (A] {kgl + (4] {kg} (44)

Now, by equating Eqs. (43) and (44),it follows that

{lgl = = Gp/1p {ip} + CR[A]T {o} + cR[AlT {$}. (45)

As with the platform dampers, the solution for {kR} is assumed to be

-C,t/I
R ™R

{kR} = {aR}e . (46)
By differentiating Eq. (46) with respect to time and equating the
result to Eq. (45),one may obtain the following expression for {&R}:

c.t/1 c,t/1
. T o
{agl = cge ¥ RalT {u} + cee ¥ Rral® {3} . (47)

If the approximate expression for {w} and the approximations to 6, ¢,
and ¥ are used in the transformation matrix in Eq. (47) then the results

for the a_. are

Rj
. . Cpt/Io
ap; = CRz(A+¢)e sin¥, (48a)
°R2 = -CRz(A+$)eth/IR cos¥ (48b)
and
. .. Cpt/Ig
gy = CR[Az2 + x(Hy=h)/J, + x ¢le . (48¢c)

Equations (48) may be integrated from tp=0 to tj=t to get the

following results:

Coz(A+d) c t/1, C
a R R R .
R, = v - {e R(—— sin¥ - cos¥) + A} +a_ -,
1 (cRilR) + ) IR R10 (492)
-C_z(A+) c.t/I, C c
R R R . R
An, = 7 7 {e Rﬁ—— cos¥ +Asin¥) - =} +a
R2 - (C /I ) + A I I R20 (,01)

v j
;
2 _a _»_ e
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and

cRc/I

apy = Ip (Az2 + x (H3—h)JP +x¢l(e R-L) + a (49¢)

R3 R30
When used in Eq. (46), Eqs. (49) provide the inertial components of the

angular momentum of the rotor damper. These are

Coz(A+$) Ca -C_t/1 -Cat/ Iy

. R "R
= ey f—— sin¥ - Xcos¥ + de ] + a,.n€ s
R T T T P At LT, *R10 o)

and
-CRz(A+¢) o c -CRt/I -C

. R R20
kpo T2 XZ'[T; cosY + Asin¥ e ] + aggq®

zr1x

(50b)

-C. t/1 -th/I

R )+QR30 R

kgy = Ip (A22 + x(Hy=h) /3, + % ](1-e e (50¢)

R3
From these expressions for the inertial angular momentum components, one
may find the platform-fixed components of the angular momentum by using
Eq. (39) with the zeroth-order approximation to the transformation
matrix and {m}. The results are

-C,z(A%) Co
th = (E§7IR)ZA¥ xl'[T; X sind + Acoso]

+ Iz sinAta 22 + x (Hy-h)/Jp + x 8], (51a)
Cpz(A+$) Ca
h,, = (Asind = = x cos¢]
R2 (6k7IR)[74 A IR
R S cosAt[A§2+x(Hp-h)/JP +x¢) (51b)
and
C%zZ(A+$)/IR .
hay * (éé7IR)[4; =zt IRx[x:z + x((H3-h)/JP + x ¢] (51¢)
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Equations (51) are zeroth-order approximations to components of the
angular momentum of the rotor damper as functions of the slow variable ©

and the fast variables ¢ and ¥.

Trans formation of the Equations to Normal Form

To apply the generalized method of averaging, it is necessary to

have equations of the form
(3} = elx;} +e2{x,} + ... (52a)

[y} = {Yo} + e{Yl} + ez{YZ} + ... (52b)
where ¢ 1s a small comnstant, {x} is a vector of slow variables, {y} is a
vector of fast variables, and the vector functions {Xj} and {Yj} are
periodic functions in the elements of {y} with a period of 2r.7
To arrive at the desired normal form, one must combine the
angular momentum solutions to get

C,z\ ch(A+$)
.h, = - X cos¢ [ 4 +
1 (6;7IP)Z + A< (CR/IRSTVXZ

2 2 s
ok sine | CPzA/IP . ch(A+¢)/1R |
- - F(Cp/Tp)e + a% 7 (CL/TR)% + 24

+ z sind [rz2 + x(H3-h)/JP](IP+IR) + Isz$ sind, (53a)

: Cpzh ch(A+$)
h, = Asind V3 T + v v
2 TEP/IP) + ) (CR/IR) + A

2 2 1
o com | BA/T, . cZz(A+$) /1y
(C, 7107 + A%~ TCTI 0% + 37

+ z cosd [AZ2 + x(H3-h)/JP](IP+IR) + Isz$ cosd (53b)
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LT
e el

2 2 :
., [ CPzA/IP . CRz(A+¢)/IR
YA Z < Z
3 (Cp/150¢ + ) (Co/1)e + A

+xh22 + X(H-h) /3] (1% 1) + T 2§ . (53¢)

The above equations for h) and hy along with the approximation for ¢

given by Eq. (15a) may be used to obtain the result,

Cph Cpz(A+$)
Z 332 ¢ Yz 7]
(CP/IP) + A (CR/IR + A

s _ A
0 == (54)
It

Now, it is assumed that the inertias of the dampers are equal and

a = Ip/I¢ = Ig/I. is adopted as the small parameter. Since

CP/It = (IP/It)(CP/IP) =g CP/IP (55)

and
Cp/T, = (I/I)(Cp/I) =a Cp/L., (56)

Eq. (54) may be written in the form

CPAZA/IP

cAz(A+) /1y
(712 + 12 *

@R/IRV - fz] . (57)

§=a

Now, because z and A in the above equations are functions of x, it is

chosen as the slow variable. Prom x = cos® it follows that

X = -9 sing = 9 z (58)

Hence, = - X/z and Eq. (57) may be replaced by

CP).zZA/IP CR)\zz(AﬂIa)/IR
af - (€, /T2 +2Z B (C /T % +x%" (59)
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( Equation (59) is one of the desired equations in normal form. The

other two are

b=a+ O (60a) :

and

rGo
[}

,-'A'.“'l

r+ Ga) (60b)

, .
LA NN P

LA

Equations (59) and (60) are in the required normal form for the

s

generalized method of averaging. Only Eq. (59) is expanded because it

. Lf‘ A "g.'.n

is the only one required to investigate nutational motion.

"

,l ,x‘ ") r

L
l’. "I

L) .'..“' '
.
PR Y e

."‘r.

l_'l_'

L‘. e ; .‘

U PR .

1]
BN -

«

“r.ﬂ:o r

38

ENEMD
k)

-

e
S

8.2

‘e o Xy
a

¢ »

.
L oo 2 s o

T R AL E



.............

2
:_: IV. FIRST ORDER SOLUTION FOR THE NUTATION ANGLE
e
AR
3 The first-order solution for the nutation angle, in terms of x, can
':f now be developed by applying the generalized method of averaging to Eq.
N
-:tf (59). 1Initially, the following nondimensional ratios must be defined:
o
\
.:._.‘ GPX
a0 Hp T TZT+ A2 (60)
-_‘:"‘ P
N and
ey §_A
. T A (61)
o R 82 + A% °
ol R
R0
‘:}: Then Eq. (59) may be written as:
. x = al-upz?h = 2 (A4)] (62)
j:f: At this point one may apply the generalized method of averaging to
A
A Eq. (62). Referring to the procedure in Appendix B,
R~
i _ , Lo o
NN A(x) == [ [ X (x,0,¥)dod¥ (63)
i 1 4 1
o) 0 0
ANAY
) where
= A [3
e Xl(x,w,‘l’) = -upzzA - uRz2 (A+p)
Since X) does not contain periodic terms in ¢ and ¥, the averaged
equation to first order in the new parameter variable a is
% = al-upz’ K - ug# (K4)] (65)

where z and A are obtained by replacing x with x in z and A.

Equation (65) may be solved exactly by separating variables and using
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partial fractions. Befor proceeding, however, it is necessary to

approximate A by using

K = Hx(3= -2=) - /3,
P L

and h = JR(m3+$).

The approximation to w3 given by Eq. (17¢) may be used to obtain

h = JR[(a§~h)/JP +4] + T .

Hence,

J
h = ﬂi(J—;}-) + JP$(-—§—) + O(a)
PR Jptp

The above expression may be substituted into Eq. (66) to obtain

- J J
- -1 1 Hx R . R
A = Hx(5— - 5) - 5= ) = ¢ ) .
JP It JP JP+JR JP+JR

* . . [
In terms of H/It’ ¢, and inertia ratios, one has

A It ( o+p )

e g
(557
where ¢ = JR/Ic and p = JP/It'

When Eq. (69) is used in Eq. (65), it is found that

: -1y Ex , oMo VP
x = 2[alupug)(F2) T+ odleh - o))

Equation (70) can be rewritten in the form,

% = (1-x2)(a+bx) ,

(66)

(67)

(68)

(69)

(70}

(71)

. o
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" where
HpO  Hpp
- .2 (tp° Hp
- a=ad (0_"‘9- Y 72)
.-;t? and

b = alp *uR)(ﬂi) %- . (73)

Now, by separating variables, using partial fractions and integrating

N Eq. (71) with x = x, at t = 0 the following solution may be obtained.

o t=-C

s 1 R.n[(l-;)/(l-xo)] +C

2 2n[(1+x)7(l+x°)]

+ Cy 2n[(a+b;)/(a+bxo)] » (74)

':£: where
e

o
lll.‘
(¢}
N
[ ]
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Y
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2

:r:.. and

! C. = b
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.
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V. STABILITY CONDITIONS

If the spacecraft's nominal attitude motion is asymptotically
stable, the "averaged" nutation angle will decay to zero as time

increases. Considering Eq. (71) for asymptotic stability, one sees

that it is necessary that X should be positive. This criteria may be

expressed as

(1-x2)(a+bx) > 0. (75)

Since the term (1-x2) is always positive for nutation angles greater

than zero, it is necessary that
a+bx>0. (76)
The substitution of the explicit expressions for a and b into Eq. (76)

provides the inequality,

- &(uRp-uPo)
* W Guptu g Gowe-1)

an

&, 65
t [ 2 B ]
A AR

If the averaged value of x is used, then ﬁ3 = H;, and the condition for

stability is

- 1y > .
H3/It(up+uR)(o+p 1) ¢(uRp-uPo) (78)
LY
$§$§ If the stability of the nominal spacecraft motion in which the platform
o' u:\
ook is inertially fixed and the rotor spins at a constant rate is
yOUS
N
};;} considered, then, for small nutation angles
l..' ‘
AOA
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/ = =
H3,It H/Ic o*Q (79)

where o* =g + q and = Q is a constant, then Eq. (78) may be put

into the form,

\
-
.

.,_{, uP(o+p-1 + glo*) + uR(a+p-1-p/c*) >0. (80)
o

4~

For a specific set of inertia parameters, Eq. (80) can be used to

define regions of stability in the GP ~ 6R plane,
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VI. RESULTS

Small Nutation Angles

If condition (80) is examined in the limiting case where §g+0, the

requirement for stability is found to be
g +p +ofa*>1 , (81)

which is always true in the small "a" approximation. This case
corresponds to energy dissipation on the platform only and the motion
should be stable.?

In the other limiting case where §p+0, the requirement for
stability is

g +p > 1 +pla*, (82)

A careful examination of condition (82) reveals that a value of g>l
would insure stability of nutational motion in this case. This condition
corresponds to an oblate spacecraft (i.e., one that spins about its axis
of maximum moment of inertia) which, according to previous results, also
exhibits stable behavior.l

When energy dissipation is present on both the rotor and platform,
condition (80) can be examined for specific inertia parameters. Figures
3 through 7 are stability diagrams for §p/Q vs. 8j/Q for different
spacecraft parameters. Fig. 3 shows a critical case where g and p both
equal 0.5.

Some qualitative results can be obtained by examination of Figs. &
through 7. These figures indicate that if the rotor inertia parameter

29
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is larger than the platform inertia parameter, then more of the area in
the region considered predicts stable motion, while if the platform

inertia parameter is larger, then more of the region predicts unstable

motion. In Figs. 4 and 5, the platform ratio is the larger and most of
the area predicts unstable motion, especially in Fig. 5 where the rotor
parameter is less than the critical value of 0.5. 1In Figs. 6 and 7, the
rotor ratio is the larger of the two and most of the area predicts
stable motion, especially in Fig. 7 where the rotor parameter is larger
‘- than 0.5. It should be noted here that Figs. 3 through 7 are very
similar to the stability diagrams found by using a linear analysis.*

v However, the results of this analysis contain the effects of inertia
parameters for both the rotor and platform, while the linear analysis

results depend only on the rotor inertia parameter.

¢ Nonlinear Stability

Another result of the generalized method of averaging is that an
analytical approximation to the nutational motion can be found from
- Eq. (74). Figures 8 through 11 show how the approximate solution of Eq.
(74) compares to the "exact" numerical solution of the full nomlinear
equations (see Appendix A). The full nonlinear equations were solved
using a fourth-order Runge-Kutta method.
T To compare the results of the approximate solution to the Runge-

Kutta solution, two cases are considered; one with the platform inertia

.

.,‘..-.'a

7 parameter larger than the rotor inertia parameter and one with the rotor
’
et inertia parameter the larger. The predicted subcases, one stable and
[
o

one unstable, of each case are considered. The nonlinear equations are
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integrated with ¢ = 0 and initial conditions of w,, = 0.2 rad/sec,

10
Q2 = 1.0 rad/sec and all others zero.

Figures 8 and 9 show the results obtained when the platform inertia
parameter is larger than the rotor inertia parameter and the approximate
results are in good agreement with the numerical results. Figures 10
and 11 show the results for the case when the rotor parameter is larger
than the platform inertia ratio and again the results agree well,
egspecially in the stable case of Fig. 10. 1In Fig. 11, the transient
nonlinearities seem to increase the difference between the approximate
and numerical results, In all cases, the difference between the two
solutions appears to be a linear function of time.

Figures 12 and 13 show the results obtained for cases of no damping
on the rotor (Fig. 12) and no damping on the platform (Fig. 13),
respectively. These figures show the effects of neglecting the tramsient
terms in Eqs. (36) and (50). When there is no damping, the oscillatory
terms never disappear. However, that these terms do eventually vanish if
only a small amount of damping is present is illustrated by Fig. 14.
the transient terms die out very rapidly when significantly large
damping comnstants are used

Figures 15 and 16 demonstrate the results of "fixing" the damper on
the rotor and platform, respectively, These simulation results were
obtained by setting the damping ratio to zero, while at the same time

setting &Rl = 6R2 = 683 = 0, for Fig. 15, and o = 0, for

pi - “p2 T “p3
Fig. 16, in the full set of equations. Figures 15 and 16 are analogous

to Figs. 12 and 13, respectively. Again, the analytical and numerical

results compare quite well, especially for the stable case.
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VII. CONCLUSIONS

The attitude motion of a model of a symmetric dual-spin spacecraft
containing spherical dampers on both its rotor and platform has been
investigated. A perturbation method which treats the effects of the
motion of the dampers as perturbing torques has been used in conjunction
with the generalized method of averaging. A stability analysis was
conducted for the constant speed rotor case and produced results that
agree well with the linear stability analysis described in Ref. 4.
However, the analysis of this thesis is more general in that more
information regarding the inertia parameters is obtained than is
possible using a conventional linear analysis., The generalized method
of averaging also provides an approximate solution for the nutational
motion which is not restricted to small angles., This solution agrees
well with results obtained by numerically integrating the full set of

nonlinear equations.
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APPENDIX A

The equations of motion of the spacecraft are derived by applying
Euler's moment equation, to the spacecraft as a whole, then to the rotor
and platform dampers individually, and then to the rotor subsystem.

The angular momentum of the entire system about its center of mass

is
Hl = Lw + Ip(wpl*wl) + IR(lehml), (A-1la)
Hy = Tw, + IP(wPZﬂnZ) + IR(“‘Rz“"z) (A-1b)
and
Hy = Jpw, + JR(m3+¢) + IP(mP3*m3) + IR(mR3+m3+¢) (A-1¢)

Let I: = It + IP + IR and I: = JP + JR + IP + IR

Then, in terms of Ig* and I *, one has

= T%, -—
Hy = Tho, + Toup, + Toog (A-2a)
Hy = I, + Lywpy + Lo (A-2b)
and
= Y%, b -
Hy = T*wq + Lo, + Towp, * (JR+IR)¢ (A-2¢)
Now, by applying Euler's moment equation to Eqs. (A-2), one finds
that
M=H+ wxi (A-3)
50
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%
(' Since the spacecraft is not affected by external torques
o ‘ H o+ wxH =0 . (a-4)
The component form of Eq. (A-4) is

¥

\. - *. . o - = —-—
ot Tho) + Lowpy + Towp * o,y —wyH, =0 (A-5a)
_::\l

e

i * " " - = -
P Thwy + Lo, + Twp, *waly —w Hy =0 (A-5b)
A . ° . bl

. *, - = -

ST Tfwy + Lowpy + Lwes + (JR+IR)¢ +wHy, -~wH =0, (A-5¢)
\~".J

e
:.::_': By substituting for H, Hy, and H, and simplifying Eq. (A-5) one
s gets

".‘\I

NN
- n. *. L ] L 4 * *- %*
L Thwy + Tgwp, + Lwp, + G+ dpw, + (I*-I¥)w w0,
[~ o
SN - = -
‘_ + IP(wP3w2 wP2m3) + IR(mmwz-msz3) 0, (A-6a)
o,
-‘.;'4'. Hop " ¥ - b *=T*
::% : dw, + T, + Twe, (JR+IR)¢w1 + (It Is)m1m3
SN0
-":-'.
[ - = -

' + I‘P(“’leB-wP3w1) + IR(“’RI“’B “"R3°’1) 0 (a-6b)
e

S

» and
"“3-.. . . . o

e *,

i T, + Tpwpe + Towe, + (JR+IR) ¢
e
’ + Lp(“’pz“’l""pl‘”z) + Tplwpowy~ wp w,) = 0, (A-6c)

The platform-fixed components of angular momentum for the platform

- " dampers can be written as

::_: hPl = Ip(mplﬂnl), (A-7a)
o ho, = I(w_,+w,) (A=7b)
i:, and
; f" hpy = Iplugq* w,). (a-7¢)
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<
( Application of Euler's moment equation to the platform damper
&
o ) yields
',:‘. M=h+ (‘_’xhp = Ip (a-8)
w3 where 'I‘_Pis a 3xl matrix of the components of the torque applied to
N the platform dampers. Equations (A-8) may be written in component form,
sj;:: viz,
100
- Loy *w,) +wyhps —wahy, = T (A-9a)
o
:::-\. T.P(usp2+m2) *wghy, —wihpa =Ty, (A-9¢)
'-:'.'- and
i IP(wP3+w3) *wihy, = wyhy, = To, (A-9¢)
o
n : :
=2 One may replace '1‘Pi -CP‘”Pi for i = 1,2,3 and substitute for hPi
{ - for 1 = 1,2,3 to get the equations,
‘:':“. . .
:'.::.' Ip(mplﬂul) + IP(“’P3“’2-“’P2“’3) + Cuyy = 0, (A-10a)
-.'.: . > -
' T.P(mpzﬂuz) + IP(“’PI“’B-“’P3“’1) + Chopy = 0 (A-10b)
o and
.-..v"
ov "V . .
") = -
3 Ip(wp3+m3) + IP(wPZwl-mlez) * Chuipg = 0 (A-10¢)
,,, Similarly, the angular momentum for the rotor dampers can be written as
o
o hpp = Iplug,+w)), (A-11a)
o th = IR(wR2+u:2) (A-11b)
e
2e and
.2 .
od hoy = IR<wR3+ w3+¢) (A-11¢)
a
'\, and the application of Euler's moment equation to the rotor dampers
T
;5 provides
b2
X1
4

-

‘ e tat e .
. -‘..f'l -.‘. '-‘_.-.’.","’..q FORSCID
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IR(wR1+m1) *w,hps - wahp, = Tpis (A-12a)

IR(NRZ*NZ) + w3th - wlhR3 = TRZ (A-12b)

h,, =T

IR(wR3+ Wyt $) + mlth - wyhy, R3"

By using TRi = Cﬂ” = 1,2,3, and substituting h for

Ri* ! Ri

i =1,2,3, one may put Eqs (A-12) in the form,
IR(wR1+wl) + IR(wR3w2ﬂ°R2w3) + Igduw, + Cowp, =0, (A-13a)

IR(wR2+w2) + IR(lew3-wR3w1) - Iggw, *+ Cowp, = (A-13b)

IR(wR3+w3+¢) + IR(“’RZ“’I-“RI“’Z) + Cowps = 0.

By considering the rotor as a system, one may derive three
equations for the rotation motion of the rotor; however, only the
equation corresponding to the rotatiom about é3 is needed. This
equation corresponds to the tenth degree of freedom of the system,

If {R} is used to denote the 3xl matrix of platform—-fixed
components of the angular momentum of the rotor and J,. as its transverse

moment of inertia, the following equations may be written:

Rl = Jtml + IP(wpl'rwl) + IR(leml),

R2 = thz + Ip(wP2+m2) + IR(wR2+m2)

Ry = JR(w3+$) + Tlwpytw,) + IR(wmm33~¢).

T IORCI IO, R P
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Euler's moment equation may be applied to Eqs. (A-14) to get

. [ ]

‘. M =R+ wxR , (a-15)
Considering only the third component of Eq. (A-15), one gets

(JR+IR)(M3+¢) * Tgg + IR(mRZwl-lewz) =0 (A-16)

)
[

e

",
&

&
LA
)

o
.I - 'l.‘

Y B B}

4,
»
-

Iy
.~l
sl

LI Y av »

., .'-.;\'.'l ) 'l..'u'

!‘~”’l\l~!..'§)'\’ q ; ,h‘;* Y




o,

"
~

L]

VY
J\:;h;" ;‘

0y

N

s
4
e

..fﬁ%%
Ay

& _a 3 »
l.- '.
N

G % _'- 'l‘

»
o
FarN

NG

.
R )

»

P

-
o

.
v

2

3

A Lty L o i B

'y
B A 2L

APPENDIX B

GENERALIZED METHOD OF AVERAGING
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The basic idea behind the method of averaging is to derive an

[y ’A {‘.{

approximate solution of the nonautonomous system by considering in its

LAy

DM

place an associated average system, which is autonomous.® For the

e,

-

generalized method of averaging to be used, the differential equations

to be solved must first be cast in "normal form.'"® The algorithm

2

i)
'.l LRE

B described below applies to the system of differential equations in

,.
W
)

i

this thesis which may be expressed as

t~"_\
=N .
R x = aX, (x,0,¥), (B-1a)
< § = Ax) +a¥,(x,0,¥) (B-1b)
:&: and -
\.’ o
~n ¥ o= a(x) + aZl(x,O ¥, (B-1c)
A
g
where X), Y}, and Z) are periodic with a period of 2r in the angles ¢
.~
:-_.:: and ¥, and a is a small constant. An approximate solution to the
v
g ‘Q; system which is valid through first order in a may be obtained by
Cad
LI
i solving the "averaged" equationms:
o
. < -
e x = a A (x), (B-2a)
ey
M','
N . .
e o = A(x) +a B, (x) (B-2b)
::::: and
LY .
0N , - - -
I Y = A(x) +a Cl(x). (B-2¢)
XN
‘.’:‘
f.:'
o,
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Here,
1 2r  2n - -
A -— [ X, (x,8,¥)dedy ,
4n 0 o0
1 2n  2n - -
B = — [ Y, (x,0,¥)doay ,
472 0 O
1 2r 2x - -
C,=— [ [ z,(&x0,¥)dear ,
4 0 o
ACx) = A(x)
and
A(x) = A(x).
The transformation from the averaged system is

X=x+a ul(E,S,i),

0 =8 +av &g,

and

where

and

1 = 4n?

2r 2n - -
£ é (X,=A)ded¥ ,
2n 2n - -
(j) é (Y,-B )dpa¥
n 2n o

[ [ (z,=c))deay .
0 0

PN .
.........

(B-3a)

(B-3b)

(B-3¢)

(B-4a)

(B-4b)

(B-5a)

(B-5b)

(B-5¢)

(B-6a)

(B-6b)

(B-6c)

In the present application, the expression for x is the one of dominant

interest.
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